ACTION PLAN FOR THE REJUVENATION OF POLLUTED RIVER STRETCH AS PER N.G.T ORDER

THE KALLOOPARA-THONDRA STRETCH OF MANIMALA RIVER (Priority IV)

Submitted by District Level Technical Committee (Alappuzha District)

Before the River Rejuvenation Committee

As per G.O (Ms) No.2/2019/WRD Dated 30/04/2019

PREFACE

As per G. O (Ms) No.2/2019/WRD Dated 30.04.2019, a District Level Technical Committee (Alappuzha District) was constituted for preparing Draft Action Plan for the rejuvenation of polluted river stretches. The polluted river stretch in the district was Kalloopara – Thondra stretch of Manimalariver. The members of the committee are as follows:

- 1. Smt. Rekha R., Superintending Engineer, Kuttanadu Division Circle, Chenganoor.
- 2. Sri. BijuB., Environmental Engineer, Kerala State Pollution Control Board, Alappuzha.
- 3. Smt. Lovely M. V., General manger, District Industrial Centre.
- 4. Sri. Sabeer A. Raheem, Executive Engineer, Kerala Water Authority, Alappuzha.
- 5. Sri. K. S. Rajesh, District Coordinator, Haritha Kerala Mission, Alappuzha.
- 6. Sri. Sheri G., Municipal Secretary, Chenganoor.
- 7. Smt. Binz Thomas, District coordinator, Suchithwa mission, Alappuzha.
- 8. Shri.Harikumar K.B. Secretary Pandanad Gramapanchayath.

Attended by

- 1. Smt. Sreekala S. L., Assistant Scientist, Kerala State Pollution Control Board, Alappuzha.
- 2. Smt. Geetha, P. A. to Executive Assistant, Irrigation Department, Alappuzha.

Considering the Kalloopara – Thondrariver stretch water quality data of last three years show that the quality parameters are within the permissible limits. The committee hereby submits the Draft Action Plan the prevention of any future contamination and preservation of water quality.

CONTENTS

Contents	Page No.
LIST OF FIGURES	4
LIST OF TABLES	4
EXECUTIVE SUMMARY	5
CHAPTER 1 REPORT	6
1.1 INTRODUCTION	6
1.1.1 Geology	6
1.1.2 River Hydrology	6
1.1.3 Land use Pattern and Agriculture	7
1.1.4 Cities and Population	7
1.1.5 Ground Water Potential	7
1.1.6 Pollution due to Industries	8
1.1.7 Classification of the River based on Designated best use	8
1.1.8 Classification of Manimala River	9
1.1.9 KalloopparaThondara Stretch Manimala River	10
1.1.10 Details of Kalloopara-Thondra Stations	10
1.1.11 Actual uses of the River Water of the Stretch	13
1.1.12 Conclusion	14
ANNEXURE 1	19-22
ANNEXURE 2	23-27
ANNEXURE 3	29-30

LIST OF FIGURES

SL. NO	TITLE	PAGE NO
1	Fig.1.1 Map of Kalloopara-Thondra Stretch	10
2	Fig.1.2 Details in Polluted Stretch (Kalloopara Thondra) in Manimala River	12
3	Fig.1.3 Kallooppara Station	12
5	Fig.1.4 Thondra Station	13
6	Fig.2(a) and (b) Nelladu Bridge	23
7	Fig.3(a) and (b) Padathu Bridge	23
8	Fig.4(a) and (b) Padathu Bridge	23

LIST OF TABLES

SL.	TITLE	PAGE
NO		NO
1	Table 1.1 Details of Panchayaths Near Kalloopara – Thondra Stretch of	7
	Manimala River	
2	Table 1.2 Classification of the Inland Surface Water Based on Designated Best	9
	Use for Fresh Water	
3	Table 1.3 Location Details of the Stations	11
4	Table 1.4 Water Quality Data of River Manimala at Kalloopara-Thondra in	28
	January 2019	

EXECUTIVE SUMMARY

Manimala River emerges from 'Kolahalamedu' of 'Mothavara' hills of the Western Ghats at a height of about 1257m above MSL. From here it flows initially to south direction up to Mundakkayam and then takes a sharp deviation to south-west direction, and flows to Erumeli. From Erumeli, up to Vizhukithodu the river flows in a north-west direction, and then again takes a turn to south-west direction.

During this flow an important tributary 'Chittar' joins with Manimalariver at Vizhukithodu. The Elakkalthodu, an important tributary also joins with the Manimalariver at Thondara. From here the river further flows in a south-west direction. At Kallungal, Manimala joins with Pamba and from here onwards the river flows in a northerly direction till it ends in Vembanadlake. Thus the Manimalariver is a south-west flowing perennial river with 19 tributaries, including major and minor ones.

Throughout the river Kerala state pollution control board has established eight water quality monitoring stations. During the year 2016 the water quality station between Kalloopara and Thondra has shown BOD values more than 3 mg/lit for a period of consecutive three months (March, April and May 2016). During that time construction work of new bridge parallel to the existing bridge were done and also illegal waste water discharge were observed. This was the reason for increase in the BOD level. After May 2016 to till now (consecutive three years, 2017, 2018 and 2019) BOD values were found less than 3mg/ltr. Constant vigil has been kept in contact with local panchayaths namely Kalluppara, Kaviyoor, Iraviperoor, Kuttur, Puramattom to prevent further contamination of the river.

REPORT

INTRODUCTION

The Manimala River is a 92km long river in south and central Kerala. It is one of the 4 Major rivers which do not have direct outlet to sea as these rivers (Pamba, Manimala, Meenachil, Achankovil) empty into vast Vembanadu Lake. Manimala is a separate independent river for all geographical purposes. It has its origin on the Muthavara Hills on the Western Ghats in Idukki District of Kerala, India. Manimalariver has been an important waterway of Central Travancore.

Geology

From a geological point of view the Manimala river basin can be broadly classified into 3 zones

- 1. Western coastal zone consists of recent sand and silt
- 2. Middle zone consists of residual laterite formed by the decomposition of Archaen crystalline rocks
- 3. Eastern zone consisting of charnokite rocks of Archean group Soil in the lower reaches are composed of mainly Clay and sand called greyish Onattukara. In the Midland region laterite soils are found along with batches of riverine alluvium

River Hydrology

The Manimala river basin has a catch area of 847 sq.km. The whole area is located in the District of Pathanamthitta, Kottayam and Alappuzha. There are 4 rain gauge station. They are located in Thiruvalla, Mundakkayam and Kanjirappally gauge up of the main river is done at Manimala and Thondara. There are no major/medium irrigation projects and there are no major/minor hydro electric power stations and another.

Land use pattern and agriculture.

The highlands are mostly reserved and protected forest with patches of tea, cardamom, coffee estates. In the midland rubber, coconut, pepper etc are grown. Paddy, coconut, vegetables are cultivated in low land region.

Cities and Population

There are no big cities in the river basis. Mundakkayam, Erumeli, Kanjirapally and Mallappally are the main towns located in the banks of Manimala river and they are fast urbanizing. The population in the Manimala river basis is mainly concentrated in the mid land and low land regions. The 2 km stretch of Manimalariverparring between the points Kallupara and Thondra through six panchayats

Sl no	PANCHAYATH	POPULATION
1	KALLOOPARA	16,837
2	PURAMATTOM	14,069
3	ERAVIPERUR	25,172
4	KAVIYOOR	16,852
5	PERINGARA	14,440
6	KUTTOOR	19,652

Table 1.1 Details of Panchayaths Near Kalloopara – Thondra Stretch of Manimala River

Ground water potential

The river basis has good ground water potential. It has been utilized only to a minimum extent. In the highland region, the presence of forest land and hilly terrain make ground water extraction difficult. The limited extraction is by dug well in midland and coastal land. The density of dug wells in 200-250/sq.km in the low land region, 75-100/sq.km in the midland region and 10-50/sq.km in the high land region of the river basis. The ground water potential in Alappuzha, Pathanamthitta, Kottayam and Idukki districts which form major part of the river basis.

Pollution due to Industries

The industrialization of the stretch of the river basis is almost nil. There is no larger/medium small-scale industry in this area, no other point source that discharging any significant quantity of

waste were observed. Only few small-scale cement brick manufacturing units are located in the river basis.

Classification of the River Based on Designated Best Use

Rivers are the main sources of surface water. Man depends on rivers as sources of supply of water for drinking, irrigation, domestic and waste disposal. It also provides water way for Urban Navigation. Rivers are also used for fishing and recreation. Thus man uses river for a variety of purposes in his day to day life.

Before formulating a water quality, improvement program, it is essential to classify the various stretches of the river in the basis of its designated best use, thus laying down minimum desirable water quality levels for the different stretches. The scheme for zoning and classification of Indian rivers, estuaries and coastal waters evolved by the CPCB lays down the norms to be followed for classification of rivers in the country.

According to the norms evolved by the CPCB, the inland surface water is classified into 5 classes (A to E) on the basis of designated best use. The principle concern here is the end use to which the water quality requirements become progressively lower from A to E. Besides, the quality of any one of 5 categories also satisfies the requirements of categories lower than the chosen one.

Designated best use is that use belonging to the upper most category of the many uses to which the water on a particular stretch of the river is put to by the people. The existing quality status is not the guiding factor. The classification of the inland surface water based on designated best use for fresh waters evolved by the CPCB is as follows.

Table 1.2 Classification of the Inland Surface Water Based on Designated Best Use for Fresh Water

Sl.no	Designated Best Use	Classification
1	Drinking water source without conventional	A
	treatment, but after disinfection	
2.	Outdoor Bathing, swimming and water	В
	contacts sports	
3.	Drinking water source with conventional	С
	treatment followed by disinfection	
4.	Propagation of wildlife and fisheries	D

5.	Irrigation, industrial cooling and	Е
	controlled waste disposal	

It is observed almost all along the entire length of Manimala river, water is being put to a mixed pattern of beneficial uses. Bathing, washing clothes and even for cooking and drinking are intensively practiced by rural communities and even by the poorer section of urban community on all stretches of the Stream.

Classification of Manimala River

Classification of Manimalariver based on the designated best use is as follows. The upstream of the river up to Kallooppara may be classified on the basis of designated best use as A i.e., water is used for drinking is given disinfection as the only treatment. The downstream of the river up to its confluence with Vembanad lake is classified as C, i.e., water is mainly used for irrigation and fishing.

MANIMALA RIVER

Fig.1.1 Map of Kalloopara-Thondra Stretch

KalloopparaThondara Stretch Manimala River

The land of Kallooppara was previously known by the name of Perumbranadu, due to its massive storage of rocks and hence being known by the name of 'Perum Parra Nadu', in the previous days and gradually being known as Perumbranad, in the latter days as legend has it. Kallooppara was once the part of Thiruvallataluk and with the formation of the Pathanamthitta district in 1983, a new taluk was created, Mallapallytaluk and Kallooppara became a part of it.

Details of Kalloopara-Thondra Stations

The land of Kallooppara was previously known by the name of Perumbranadu, due to its massive storage of rocks and hence being known by the name of 'Perum Parra Nadu', in the previous days and gradually being known as Perumbranad, in the latter days as legend has it.Kallooppara was once the part of Thiruvallataluk and with the formation of thePathanamthitta district in 1983, a new taluk was created, Mallapallytaluk and Kallooppara became a part of it.

Sl.No	Location	Latitude
	Location	Longitude
1	Kalloopara	09 ⁰ 23'34''
1	Kanoopara	76°38'40''
2	Thondro	09º21'64''
	Thongra	76 ⁰ 35'23''

Table 1.3 Location Details of the Stations

Evaluating the analysis reports of water samples collected from Kalloopara and Thondra points after May 2016 till now (consecutive three years, 2017, 2018 and 2019) BOD values were found to be higher than 3mg/ltr in 2016. The construction work of new bridge parallel to the existing bridge was going on at that time and that was the reason for increase in the BOD level.

Fig.1.2 Details in Polluted Stretch (Kalloopara-Thondra) in Manimala River

Fig.1.3 Kallooppara Station sampling point

Fig.1.4 Thondra Station sampling point

Actual Uses of the River Water of the Stretch

Kallooppara : Domestic activities and used as Kerala Water Authority drinking water source.

Thondara : Domestic activities like washing, residential activities, bathing, etc.

The data on the activities in the nearby area Kalloopara - Thondara Stretch of Manimala River is as follows

- 1. For bathing and irrigation.
- 2. Water supply scheme at Kalloopara.
- 3. No salinity intrusion in this stretch.
- 4. No industrial discharge and no industries are located in the banks of this stretch of Manimalariver.

Evaluating the analysis report of the samples collected for the month of February, March, April and May 2016, the values of BOD had exceeded from the limit of 3 mg/ltr (Annexure 3). At that time, the construction work of bridge parallel to the existing Thondarabridge was going on, so the bank of this portion, was dumped with building material, organic waste, mud etc. Also the water was

stagnant. This may be a reason for the higher BOD in that stretch. However, a letter has been issued to all the local bodies (Kuttoor, Kalloopara and EraviperoorGramaPanchayath) on the banks of this Kalloopara-Thondara stretch to close all the septage/unauthorized discharges leading to river.

Several streams were found to get connected to Manimalariver between Kalloopara and Thondra points. Bridges like Nelladu bridge (Fig 1,2), Padathu bridge (Fig 3,4) had tributaries that joined Manimala river but now, due to human encroachment most of the regions of these streams had changed for domestic purposes. Hence, flow rate in this region is very low.

Kuttipuzha(Fig 5,6) is another stream connected to Manimala which carries water for cultivation to nearby areas during summer season.

Another stream Panayampalamthodu, 14km long originates from Karukachal in Kottayam district confluences to Manimala river and it is an important source of water for irrigation purposes to panchayats like Aanikaadu, Mallapally, Kunnamthanam, Kaviyoor, and Kalloopara.

Several field visits were conducted in this area and it was noticed that there is no source for any type of industrial pollution.

Fig.2 (a) and (b) Images of Nellad Bridge

(a)

(a)

(b)

(b)

Fig.4 (a) and (b) Kuttipuzha Stream Connected to Manimala

Conclusion

Evaluating the analysis reports of water samples collected from Kalloopara and Thondra points from June 2016, 2017, 2018 and 2019 (Annexure 3), BOD values were found to be much lesser than 3mg/ltr. From the field visits, it was found that there were no industries in the banks of the river that could contribute to any type of water pollution. Constant vigil has been kept for the land use/establishment of industries in the area in contact with local panchayaths namely Kalluppara, Kaviyoor, Iraviperoor, Kuttur, Puramattom. Concentration of industries in these panchayaths are very low and even very few cottage industries are there .At present, municipal solid wastes (including plastic) contamination in the river is minimal. Proper awareness will be providing to the respective panchayaths to protect the river in the same manner. Help from the respective department including police will be arranged to prevent the illegal discharge of septage/waste water by waste water collection agencies

CENTRAL POLLUTION CONTROL BOARD (Water Quality Management Division-I) Delhi-110032

EXECUTING SUMMARY ON PROPOSED ACTION PLANS FOR REJUVENATION OF IDENTIFIED POLLUTED RIVER STRETCH

Sl. No.	DESCRIPTION OF ITEM		Details
1.	Name of the identified polluted river and its tributaries	:	Kalloopara – Thondra Stretch of Manimala.
2.	Is river is perineal and total length of the polluted river	:	(Yes) Length 2 km
3.	No of drains contributing to pollution and names of major drains	:	NIL
4.	Whether 'River Rejuvenation Committee (RRC) constituted by the State Govt./UT Administration and If so, Date of constitution of 'RRC'	:	02/05/2019, 22/05/2019, 15/07/2019
5.	Major Towns on the banks of the river with population	:	NIL
	a. Total water consumption and sewage generation in MLD	:	Total Water consumption 40.5 in MLD (By Kerala Water Authority) Kallorpara - 3.5 MLD Kaviyoor - 4 MLD Kattod – 33 MLD Total Sewage generation NIL
	b. Total no. of existing STPs and the total capacities in MLD	:	NIL
	c. Gaps in sewage treatment in MLD and no. of towns not having STPs	:	NIL
	d. Total MSW generation in TPA	:	NIL
	e. Existing treatment and disposal facilities and total capacity	:	NIL

6.	Major industrial estates located with total no. of industries	:	Industrial Estate	No. of Ind	ustries	
			NIL	Nil		
	a. Total water consumption and total industrial effluent	:				
	generation in MLD		Industrial	Total	Effluent	\square
	NIL		Name	water	quantity	
				consump		
				tion		
			NO		NIL	
				NIL		

	b. No. of industries having captive ETPs and their treatment capacity in MLD	:	NIL
	c. No of CETP's and their treatment capacity	:	NIL
	d. Gaps in treatment of industrial effluent	:	NIL
	e. Total HW generation in TPA in the catchment area	:	NIL
	f. Existing HW Treatment and Disposal Facilities and total capacity with life span	:	NIL
7.	Action plan includes mainly covering aspect such as (Proposal for utilisation of sewage, ground water recharging or rain water harvesting, measures for the protection and management of flood plain zone, maintaining minimum E- flows and water shed management, plantation on both sides of the river, setting up of bio-diversity parks etc., as per Hon'ble NGT Orders dated 20.09.2018 and 19.12.2018)	:	Action plan is attached as Annexure1. The river stretch is flowing through villages and no industrial/ domestic/ municipal waste water is reaching the river in this stretch. Preventive actions are taken to avoid future contamination. It is also needed to be ensured that no waste water is reaching the river from paddy field or Horticrop farm land located adjacent to the river. The minor rivulet are not flowing or reaching the river even during rainy season.
8.	Min. and Max. required time period for implementation of action plans		Min – NIL Max - NIL Already Implemented
9.	Total estimated budget in crores towards implementation of proposed action plans with break-up (e.g. No. of STPs, capacity, total cost; No of CETPs, total capacity, Cost towards interception and diversion of sewage/effluent to STPs/CETPs etc)	:	NIL (Corrective action already taken)
10.	Responsible Organisation (s) for implementation of proposed action plans (Please enclose details as annexure)	:	KSPCB, Irrigation, Panchayath, Police
11.	Proposed Mechanism for execution of action plans	:	Periodic inspection for the prevention of possible future contamination
12.	Expected deliverables with respect to achieving Goals (Please enclose as annexure)		The objective is to keep the river water quality well with the prescribed standard. The same has been achieved as per the water quality analysing result of past three years. Constant vigil has been kept for the landuse/establishment of industries in the area in contact with local panchayaths namely Kalluppara Kaviyoor

Iraviperoor, Kuttur, Puramattom.
Concentration of industries in
these panchayaths are very low
and even very few cottage
industries are there.
At present, municipal solid
wastes (including plastic)
contamination in the river is
minimal. Proper awareness will
be provide to the respective
panchayaths to protect the river
in the same manner.
Help from police will be arranged
to prevent the discharge of
septage/waste water by illegal
waste water collection agencies.

	ANNEXURE 1										
	ACTION PLAN										
Sl. N o.	Ref NGT Order no: 673/20 18 Dated 20.09. 18	Activity	Implementin g agency	Estimate d Expendit ure in lakhs	Source of Fund	Timelin e	Expected Outcome				
1	A(a)	Monitoring of river water quality by sampling	Kerala State Pollution Control Board	12.08/yea r	Ongoing NWMP project	2019- 2020	Periodical water quality assessmen t				
2	A(b)	Septage& Sewage Treatment plant	For Chenganoor& Thiruvalla Municipality Localbodies also need to provide common septage treatment facilities to collect, treat and dispose sewage particularly for thickly populated area	400	HarithaKeralam/Suchitwa Mission	Tentativ ely 2019- 2021	Reduce the pollution load and Improve the water quality				
3	C(ii)	Establishm ent & Modernizat ion of SWM treatment plant (Solid Waste Manageme nt)	Chenganoor& Thiruvalla Municipality	To be estimated	Own Central State	2019- 2021	Better solid waste managem ent (SWM) Reduce the river pollution due to solid waste dumping				
4	С	Material	Chenganoor&	120 18	Own	2019-	Better				

collection facility (SWM)	Thiruvalla Municipality and	Central	2021	solid waste managem
	Kalloopara, Eraviperoor, Puramattom, Kaviyoor, Peringara, Kuttoorpanchay aths	State		ent (SWM) Reduce the river pollution due to solid

							waste
							dumping
5	C	Resource	Chenganoor&	20	Own	2019-	Better
		recovery	Thiruvalla			2020	solid
		facility	Municipality				waste
					Central		managem
					State		ent
							(SWM)
							Reduce
							ne river
							due to
							colid
							waste
							dumning
6	С	Installing	Kalloonara	200	Central (Swach Bharat	2019-	Better
		household	Eraviperoor.	200	Mission – Urban)	2020	solid
		and	Puramattom,		Through Sichitwa mission	2020	waste
		community	Kaviyoor,				managem
		level solid	Peringara,				ent
		waste	Kuttoorpanchay				(SWM)
		manageme	aths				Reduce
		nt units					the river
							pollution
							due to
							solid
							waste
							dumping
7	С	Door to	Chenganoor&	36	To be found	Tentative	Better solid
		Door	Thiruvalla			ly	waste
		collection	Municipality			2020-	manageme
		and				2021	nt (SWM)
		transportati					Reduce the
		on of MSW					river
							due to
							solid waste
							dumping
8	с	Preventing	Panchayath	Yet to be	-	2019-	Local river
	_	illegal	Police	estimated		2021	conservati
		discharge of	KSPCB				on or
		septage and					protection
		other waste					group,
		water into					police and
		the river					Panchayat
							h
							Authorities
							act hand in
1	1	1	1		1		giove with

							KSPCB to
							prevent
							illegal
							contaminat
							ion
							activities
9	С	Regulating	Irrigation	Yet to be	State fund	Tentative	Governme
	•	activities in	department	estimated		lv	nt
		flood plain	aspartment			2020-	constituted
		zone.				2021	a river
		protection					basin
		and					conservati
		managemen					on and
		t of flood					manageme
		plain zone					nt
							authority
							and a
							committee
							constituted
							for drafting
							river basin
							conservati
							on act
10	С	Greenery	Irrigation	Yet to be	State fund	Tentative	Eco-
		developmen	department	estimated		ly	friendly
		t- Plantation				2020-	approach
		on both				2021	will create
		sides of the					a positive
		river, setting					attitude in
		up					public
		biodiversity					
		parks n					
		flood plains					
		by removing					
		encroachme					
11	C(h)(::)	nt	Kallaanses	Votto	State Dian fried - Cristitation	Tortetive	Doduce the
	C(D)(II)	Green	Kalloopara,	ret to be	State Plan Tund – Suchithwa	rentative	Reduce the
		Protocol	Eraviperoor,	estimated	IVIISSION/	IY 2020	solid waste
			Puramattom,		Harithakeralam Mission	2020-	generation
			Kaviyoor,			2021	
		UTTICES,	Peringara,				wunicipalit
			Kultoorpancha				У
		functions	yaths				
		runctions					

12	D(a)	Issues	Irrigation	Yet to be	State fund	Tentative	Governme
		relating to	department	estimated		ly	nt
		E-flow,				2020-	constituted
		maintaining				2021	a river
		minimum					basin
		environmen					conservati
		tal flow of					on and
		river (by					manageme
		having					nt
		watershed					authority
		managemen					and a
		t provisions)					committee
							constituted
							for drafting
							river basin
							conservati
							on act
13	E	Constructio	Manimala	5,46,381/-	Plan fund	Within 1	
		n of The action month	Grama			year	
		Inonipurath	Panchayath				
		and Kanyan					
		kaday					

ANNEXURE 2

	Table 1.4 Ar	alvsis Repor	t of Kalloopa	ara 2016
--	--------------	--------------	---------------	----------

Damamatana	T I					MON	NTHS						
Parameters	Unit	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
РН	-	7.5	7.0	6.9	7.7	6.1	6.8	6.1	7.1	6.9	7.0	7.2	7.2
Conductivity	μS/cm	68	87	80	143	73	54	65	79	51	54	6.1	46
Turbidity	NTU	BDL	1.7	BDL	2.5	BDL	BDL	1.5	BDL	1.4	BDL	BDL	BDL
DO	mg/l	7.3	7.8	7.6	2.0	7.4	6.1	6.2	6.3	6.0	7.1	6.9	7.4
BOD	mg/l	1.7	3.5	2.2	0.3	7.4	0.7	0.4	0.9	0.8	0.8	0.9	1.0
COD	mg/l	3.2	9.6	9.6	22.4	6.4	22.4	3.2	3.2	3.2	6.4	3.2	3.2
Chloride	mg/l	10.0	20.0	20.0	30.0	20.0	10.0	20.0	20.0	10.0	10.0	10	10.0
Sulphate	mg/l	BDL											
Phosphate	mg/l	BDL											
Nitrate Nitrogen	mg/l	0.14	0.03	0.07	0.08	0.20	0.18	0.07	0.00	0.01	0.02	0.002	0.2
Amm. Nitrogen	mg/l	BDL											
Alkalinity	mg/l	10.0	30.0	20.0	50.0	10.0	10.0	10.0	20.0	20.0	20.0	20	10.0
T.Hardness	mg/l	20.0	30.0	20.0	60.0	20.0	20.0	20.0	30.0	20.0	20.0	20	20.0
ca	mg/l	4.0	8.0	4.0	20.0	4.0	4.0	4.0	8.0	4.0	4.0	4	4.0
Mg	mg/l	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
T D S	mg/l	48.0	62.0	54.0	102.0	48.0	38.0	46.0	56.0	36.0	38.0	36	32.0
TFS	mg/l	32.00	40.00	42.00	64.00	32.00	26.00	38.00	42.00	30.00	28.00	22	20.0
Fluoride	mg/l	0.01	0.07	0.06	0.03	BDL	BDL	0.80	0.20	0.30	0.08	0.06	0.2
Sodium	mg/l	11.8	10.2	11.2	11.6	10.8	5.4	10.8	9.6	5.2	5.6	5.4	3.6
Potasssium	mg/l	1.4	1.9	1.7	2.6	2.7	1.0	1.1	1.3	0.8	1.4	1.3	1.3
TSS	mg/l	24.00	22.00	20.00	44.00	14.00	20.00	18.00	16.00	22.00	10.00	12	12.00
Tcoli	No/100ml	400	900	800	300	200	600	1000	800	1000	1100	400	200.0
Fcoli	No/100ml	240	640	620	200	120	420	840	640	760	840	120	120.0
Boron	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TKN	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

	TT T					MON	THS						
Parameters	Unit	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
РН	-	7.8	7.5	8.3	7.9	7.9	5.4	6.8	7.2	6.3	6.9	6.7	6.3
Conductivity	μS/cm	73	74	88	128	120	104	156	135	87	174	104.25	102
Turbidity	NTU	BDL	BDL										
DO	mg/l	7.4	7.7	4.8	7.9	5.9	6.9	8.0	7.3	7.5	6.8	6.9	5.9
BOD	mg/l	1.7	0.8	1.8	1.9	2.2	2.1	1.1	1.7	1.4	2.1	0.6	2.1
COD	mg/l	3.2	32.0	22.0	6.4	16.0	9.6	12.8	16.0	16.0	22.4	6.4	25.6
Chloride	mg/l	10.0	20.0	22.0	10.0	20.0	20.0	30.0	20.0	20.0	40.0	20	20.0
Sulphate	mg/l	BDL	1.6	BDL	BDL	BDL	10.5	BDL	8.9	4.3	4.6	3.81	BDL
Phosphate	mg/l	BDL	BDL										
Nitrate Nitrogen	mg/l	0.03	0.02	0.06	0.05	0.01	0.20	0.21	0.17	0.19	0.17	0.176	0.1
Amm. Nitrogen	mg/l	BDL	BDL										
Alkalinity	mg/l	30.0	20.0	20.0	80.0	100.0	40.0	70.0	50.0	40.0	40.0	140	46.0
T.Hardness	mg/l	30.0	20.0	20.0	80.0	70.0	40.0	70.0	60.0	60.0	70.0	50	52.0
Ca. Hardness	mg/l	20.0	10.0	10.0	30.0	30.0	20.0	40.0	30.0	10.0	30.0	30	28.0
Mg. Hardness	mg/l	10.0	10.0	10.0	50.0	40.0	20.0	30.0	30.0	50.0	40.0	20	24.0
TDS	mg/l	52.0	52.0	62.0	90.0	76.0	74.0	94.0	88.6	62.0	121.2	74.05	70.0
TFS	mg/l	34.00	30.00	30.00	32.00	30.00	24.00	22.00	24.00	22.00	20.00	26	24.0
Fluoride	mg/l	0.10	0.20	0.04	0.30	0.20	0.00	0.00	0.00	0.00	0.00	0	0.0
Sodium	mg/l	4.9	10.9	12.1	3.0	20.0	18.0	17.3	10.9	0.9	23.4	10	10.5
Potasssium	mg/l	1.9	1.7	2.2	2.5	3.0	1.7	1.6	3.2	1.1	1.4	0.6	0.7
TSS	mg/l	16.00	16.00	12.00	18.00	14.00	12.00	10.00	12.00	10.00	12.00	14	12.00
Tcoli	No/100ml	400	440	360	460	400	160	80	72	100	80	100	120.0
Fcoli	No/100ml	230	240	220	260	200	80	0	40	40	0	60	80.0
Boron	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TKN	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Table 1.5 Analysis Report of Kalloopara 2017

	1											1	1
Parameters	Unit					MON	THS						
1 arankters	Omt	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
РН	-	7.3	7.7	7.3	7.4	6.9	6.8	7.1	7.8	7.7	7.8	7.4	7.2
Conductivity	µS/cm	96	98	128	146	186	178	76	60	130	430	220.8	129
Turbidity	NTU	BDL	BDL	BDL	BDL	0.3	BDL	BDL	BDL	BDL	BDL	3.6	2.3
DO	mg/l	7.7	7.8	6.3	6.1	7.9	7.8	6.5	5.0	7.5	7.6	6.6	7.2
BOD	mg/l	1.9	1.9	2.4	2.2	3.0	3.0	2.2	0.6	1.0	0.9	1	0.2
COD	mg/l	28.8	26.0	28.8	32.0	35.2	12.0	16.0	13.0	9.6	22.4	3.2	3.2
Chloride	mg/l	10.0	30.0	20.0	30.0	50.0	40.0	10.0	10.0	20.0	40.0	20	30.0
Sulphate	mg/l	BDL	1.6	19.7	12.1	BDL	6.4	BDL	6.4	16.5	31.4	60.64	BDL
Phosphate	mg/l	BDL	BDL	BDL									
Nitrate Nitrogen	mg/l	0.11	0.04	BDL	0.10	0.19	0.19	0.18	0.08	0.04	BDL	0.13	0.2
Amm. Nitrogen	mg/l	BDL	BDL	BDL									
Alkalinity	mg/l	20.0	50.0	60.0	40.0	50.0	80.0	60.0	20.0	20.0	60.0	20	20.0
T.Hardness	mg/l	24.0	60.0	80.0	60.0	60.0	90.0	50.0	30.0	40.0	80.0	90	40.0
Ca. Hardness	mg/l	10.0	40.0	10.0	30.0	20.0	60.0	20.0	10.0	30.0	60.0	50	30.0
Mg. Hardness	mg/l	14.0	20.0	70.0	30.0	40.0	30.0	30.0	20.0	10.0	20.0	40	10.0
T D S	mg/l	68.0	70.0	86.0	104.0	124.0	126.0	54.0	42.0	82.6	258.6	156.52	90.2
TFS	mg/l	42.00	36.00	54.00	82.00	94.00	80.00	60.00	68.00	68.00	180.00	112	108.0
Fluoride	mg/l	0.00	0.10	0.10	0.10	0.04	0.00	0.30	0.30	0.40	0.40	0.3	0.1
Sodium	mg/l	5.1	14.3	10.6	12.0	28.0	23.5	10.8	3.9	10.5	28.2	7.1	9.0
Potasssium	mg/l	0.5	1.5	2.4	4.1	2.2	1.4	1.9	1.2	1.1	3.8	1.2	1.1
TSS	mg/l	10.00	12.00	10.00	8.00	10.00	10.00	10.00	12.00	14.00	14.00	12	10.00
Tcoli	No/100ml	220	180	200	240	320	340	20	80	60	0	0	1400.0
Fcoli	No/100ml	120	60	120	120	160	220	0	40	20	0	0	700.0
Boron	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TKN	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Table 1.6 Analysis Report of Kalloopara 2018

Domoniations	T]					MON	NTHS						
Parameters	Unit	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
РН	-	7.0	6.8	7.3	6.9	7.8	7.0	6.9	7.5	7.9	7.3	7.2	7.6
Conductivity	µS/cm	52	94	87	81	90	58	54	56	45	57	76	75
Turbidity	NTU	0.1	BDL	BDL	10.0	0.4	0.6	BDL	0.6	BDL	BDL	BDL	BDL
DO	mg/l	7.1	5.7	5.2	6.7	4.7	7.9	6.8	7.9	7.4	6.1	6	5.3
BOD	mg/l	1.2	2.5	1.2	3.2	6.4	1.4	1.5	2.1	1.1	1.0	1.4	0.9
COD	mg/l	6.4	3.2	3.2	12.8	25.6	3.2	3.2	12.8	3.2	3.2	16	3.2
Chloride	mg/l	10.0	20.0	20.0	30.0	20.0	10.0	9.0	10.0	10.0	10.0	20	20.0
Sulphate	mg/l	BDL	BDL	BDL									
Phosphate	mg/l	BDL	BDL	BDL									
Nitrate Nitrogen	mg/l	0.12	0.05	0.06	0.03	0.02	0.10	0.12	0.16	0.15	0.13	0.14	0.1
Amm. Nitrogen	mg/l	BDL	BDL	BDL									
Alkalinity	mg/l	10.0	30.0	20.0	BDL	20.0	20.0	150.0	10.0	10.0	10.0	30	20.0
T.Hardness	mg/l	20.0	50.0	40.0	30.0	30.0	20.0	20.0	20.0	20.0	20.0	40	40.0
Ca. Hardness	mg/l	10.0	20.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	20	20.0
Mg. Hardness	mg/l	10.0	30.0	30.0	20.0	20.0	10.0	10.0	10.0	10.0	10.0	20	20.0
T D S	mg/l	30.0	58.0	60.0	48.0	58.0	40.0	34.0	36.0	30.0	32.0	54	52.0
TFS	mg/l	22.00	38.00	46.00	36.00	46.00	22.00	20.00	28.00	18.00	20.00	36	40.0
Fluoride	mg/l	0.10	0.08	0.06	0.08	0.10	0.09	0.04	0.04	0.10	0.07	0.06	0.1
Sodium	mg/l	3.1	4.1	6.1	4.0	7.0	5.6	3.6	4.6	3.2	4.1	8.5	4.0
Potasssium	mg/l	1.8	1.4	1.8	2.2	1.8	1.5	1.1	0.9	1.1	1.8	1.2	1.7
TSS	mg/l	14.00	10.00	16.00	10.00	12.00	12.00	12.00	14.00	12.00	10.00	14	24.00
Tcoli	No/100ml	240	320	200	200	280	280	360	280	200	120	220	260.0
Fcoli	No/100ml	140	200	80	0	160	120	240	120	180	80	100	110.0
Boron	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TKN	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Table 1.7 Analysis Report of Thondra 2016

Demonsterre	T] *4					MON	NTHS						
Parameters	Unit	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
РН	-	7.6	7.4	8.2	8.4	7.6	6.4	7.0	7.5	6.9	6.5	7	7.0
Conductivity	µS/cm	76	76	80	136	92	210	142	128	58	228	70.28	65
Turbidity	NTU	BDL	BDL	BDL	BDL	BDL	0.6	BDL	BDL	BDL	BDL	BDL	BDL
DO	mg/l	5.8	6.5	6.9	6.5	6.4	6.1	6.3	7.2	7.2	6.4	6.8	6.3
BOD	mg/l	0.7	0.9	1.8	1.4	1.4	1.5	1.0	1.0	1.1	2.2	0.4	2.5
COD	mg/l	3.2	32.0	32.0	6.4	9.6	9.6	19.2	16.0	12.8	25.6	6.4	28.8
Chloride	mg/l	20.0	20.0	12.0	10.0	20.0	70.0	30.0	20.0	10.0	60.0	10	16.0
Sulphate	mg/l	BDL	BDL	BDL	BDL	BDL	6.9	2.6	4.3	3.0	3.3	BDL	BDL
Phosphate	mg/l	BDL											
Nitrate Nitrogen	mg/l	0.06	0.06	0.06	0.03	0.03	6.10	0.21	0.09	BDL	0.17	0.183	0.2
Amm. Nitrogen	mg/l	BDL											
Alkalinity	mg/l	20.0	20.0	20.0	90.0	80.0	50.0	70.0	60.0	40.0	50.0	70	32.0
T.Hardness	mg/l	30.0	30.0	22.0	90.0	80.0	70.0	80.0	60.0	30.0	50.0	70	36.0
Ca. Hardness	mg/l	20.0	10.0	10.0	10.0	30.0	30.0	40.0	30.0	10.0	20.0	30	12.0
Mg. Hardness	mg/l	10.0	20.0	12.0	80.0	50.0	40.0	40.0	30.0	20.0	30.0	40	24.0
T D S	mg/l	54.0	54.0	48.0	96.0	62.0	144.0	88.4	72.8	40.0	159.6	48.84	44.0
TFS	mg/l	36.00	32.00	38.00	36.00	40.00	30.00	24.00	28.00	30.00	26.00	30	32.0
Fluoride	mg/l	0.04	0.10	0.06	0.05	0.10	0.00	0.00	0.00	0.00	0.00	0	0.0
Sodium	mg/l	7.6	7.8	6.9	3.0	10.0	38.4	16.8	11.2	5.8	36.1	7	9.0
Potasssium	mg/l	2.0	1.2	1.0	2.9	2.8	1.9	1.7	3.3	1.3	1.9	0.7	0.7
TSS	mg/l	20.00	18.00	14.00	22.00	18.00	14.00	12.00	14.00	16.00	16.00	12	10.00
Tcoli	No/100ml	200	280	200	320	240	200	220	180	200	240	280	240.0
Fcoli	No/100ml	120	120	100	200	160	100	100	90	120	100	180	140.0
Boron	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TKN	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Table 1.8 Analysis Report of Thondra 2017

Demomentance	Tin:4					MON	NTHS						
rarameters	Umt	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
РН	-	6.7	7.4	6.9	7.6	7.0	6.7	7.2	7.1	7.6	7.6	7.1	7.1
Conductivity	µS/cm	79	74	148	130	102	156	59	62	27	180	110.94	191
Turbidity	NTU	BDL	BDL	BDL	BDL	0.5	BDL	BDL	BDL	BDL	BDL	1.2	1.1
DO	mg/l	6.9	7.6	6.8	3.7	7.9	1.1	6.9	6.6	7.2	5.7	7.5	6.8
BOD	mg/l	0.1	2.0	2.5	1.9	2.0	0.6	2.9	0.5	0.9	0.2	0.9	1.1
COD	mg/l	25.6	24.0	24.0	22.4	25.6	16.0	16.0	13.0	6.4	12.8	22.2	19.2
Chloride	mg/l	10.0	30.0	20.0	30.0	30.0	40.0	10.0	10.0	20.0	20.0	20	60.0
Sulphate	mg/l	BDL	10.2	34.6	1.0	0.8	BDL	BDL	8.9	10.5	9.8	5.39	9.5
Phosphate	mg/l	BDL	BDL										
Nitrate Nitrogen	mg/l	0.14	0.00	BDL	0.07	0.19	0.20	0.17	0.07	0.03	0.00	0.13	0.2
Amm. Nitrogen	mg/l	BDL	BDL										
Alkalinity	mg/l	24.0	50.0	70.0	40.0	30.0	90.0	50.0	30.0	20.0	30.0	40	10.0
T.Hardness	mg/l	26.0	60.0	100.0	45.0	40.0	90.0	40.0	40.0	30.0	50.0	60	40.0
Ca. Hardness	mg/l	12.0	20.0	20.0	20.0	10.0	50.0	30.0	20.0	20.0	40.0	30	30.0
Mg. Hardness	mg/l	14.0	40.0	80.0	25.0	30.0	40.0	10.0	20.0	10.0	10.0	30	10.0
TDS	mg/l	46.0	44.0	104.0	92.0	72.0	110.0	42.0	42.0	68.0	110.4	78.26	132.4
TFS	mg/l	24.00	28.00	60.00	68.00	72.00	60.00	52.00	64.00	62.00	58.00	48	112.0
Fluoride	mg/l	0.00	0.20	0.10	0.10	0.08	0.02	0.50	0.40	0.30	0.30	0.4	0.2
Sodium	mg/l	6.6	14.0	12.6	14.0	16.0	23.5	42.0	4.3	10.8	7.7	3.6	27.2
Potasssium	mg/l	0.7	3.1	2.4	3.4	2.6	1.7	1.8	1.2	3.1	0.9	1.3	1.2
TSS	mg/l	18.00	14.00	12.00	12.00	10.00	10.00	10.00	12.00	16.00	11.00	14	14.00
Tcoli	No/100ml	160	220	240	280	240	280	20	80	60	0	600	800.0
Fcoli	No/100ml	80	80	160	140	120	180	0	20	20	0	200	400.0
Boron	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TKN	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Table 1.9 Analysis Report of Thondra 2018

Date of Sampling	Station	Temp (°C)	рН	Conductivity (µmhos/cm)	DO (Mg/L)	BOD (Mg/L)	TC (MPN/100ml)	FC (MPN/100ml)
January	Kallopara	28	7.4	80.1	6.4	1.6	100	50
04.01.19	Thondra	27	7.4	84.21	6.8	2	400	200
February	Kallopara	28	7.3	196.2	7.4	1.3	700	450
05.02.19	Thondra	27	7.1	222.24	7	1.7	600	400
March	Kallopara	32	7.9	284.26	5.4	1.3	800	480
05.03.19	Thondra	32	6.9	304.14	7	2.3	700	300
Anril	Kallopara	32	7.6	286	5.5	2.4	400	180
02.04.19	Thondra	32	7.4	261.24	6.1	1.7	1200	800
May	Kallopara	32	7.5	304.24	6.2	2.9	800	400
03.05.19	Thondra	32	7.6	278.24	6.1	1.8	700	370
June	Kallopara	29	7.5	330.18	6.5	2.3	400	240
01.06.19	Thondra	29	7.6	274.25	5.8	2.4	700	350

Table 1.10 Water Quality Data of River Manimala at Kalloopara-Thondra in January 2019

Annexure -4

MINUTES OF DISTRICT LEVEL TECHNICAL COMMITTEE MEETINGS FOR REJUVENATION OF POLLUTED STRETCHES IN ALAPPUZHA DISTRICT

Based on the orders of the Hon'ble National Green Tribunal (NGT) and other related document, Government of Kerala, vide G.O.(Ms) No.2/2019/WRD dated 30/04/2019, constituted a District Level Committee for preparing an action plan for rejuvenation of polluted stretches in each district. The committee in Alappuzha district is constituted as follows.

- 1. Mr.Biju B., Environmental Engineer, Kerala State Pollution Control Board, Alappuzha
- 2. Smt. Rekha R., Superintending Engineer, Kuttanadu Division Circle, Chenganoor
- 3. Smt.Lovely M. V., District Industrial Centre
- 4. Mr. Sabeer A. Raheem, Executive Engineer, Kerala Water Authority, Alappuzha
- 5. Mr. K. S. Rajesh, District Coordinator, Haritha Kerala Mission, Alappuzha
- 6. Mr. Sheri G., Municipal Secretary, Chenganoor
- 7. Smt. Sreekala S. L., Assistant Scientist, Kerala State Pollution Control Board, Alappuzha
- 8. Smt Geetha, P. A. to Executive Assistant, Irrigation Department, Alappuzha

1ST MEETING OF THE DISTRICT LEVEL TECHNICAL COMMITTEE (DLTC) ON 02-05-2019

The first meeting of the committee (DLTC) was held at 11 am on 02-05-2019 at the District Office of the Pollution Control Board (PCB) at Alappuzha. In this meeting, the members expressed the need of two-week time for checking the facts and details available in various department before the preparation of action plans for Manimala River (Kalloopara-Thondrastrech) and Pamba River (Mannar-Thakazhi. It was also decided to conduct the next meeting on 22-05-2019 at office of the PCB, Alappuzha for evaluating the rate of pollution in these rivers and the importance of solid waste treatment plant for river protection. It was concluded that the members should carefully consider this matter in the perspective of the respective departments and should present their findings in the next meeting.

2NDMEETING OF DLTC DATED 22-05-2019

The meeting was held at 3 pm on 22-05-2019 at the District Office of the Pollution Control Board (PCB) at Alappuzha. The decisions taken in this meeting is as follows:

- It was decided to submit the details of various intake points of Water Authority in the district to the office of PCB, Alappuzha through e-mail for measuring the water quality at these intake points.
- > Prepare the master plan for rejuvenating the contaminated streams in the district.
- The members of the meeting reiterated the need and necessity for scientific solid/liquid waste treatment facility in the district for effective prevention of the uncontrolled pollution in public water resources.
- It was unanimously decided that the actions required for preserving the water quality of Manimala river has already been taken and analysis report of last three year shows that the BOD level is well within the limit. So the matter may be reported to NGT.

<u>3RD MEETING OF THE DLTC DATED 15-07-2019</u>

The third meeting of the committee (DLTC) was held at 11:30 am on 15-07-2019 at the Collector's Chamber, Collectrate, Alappuzha. The main topic of discussion was Pollution prevention and conservation of Kalloopara-Thondra stretch of Manimala river. It is informed to the members that as per NGT direction CPCB has insisting a report for the conservation of the sipulated stretch of manimala river even if it is not polluted. Different suggestions were made by different members for the prevention and conservation of this river stretch. It was decided to conduct a field visit on 16-07-2019 to Kalloopara-Thondra area for preparing a preventive action report incorporating the suggestions and perspective of all member departments.